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• Large potential for analysis of labour market dynamics;

• Real-time analysis;

• Optimal labour market policies.

Labor Market Analysis in the Big Data Era: advantages
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Labor Market Analysis in the Big Data Era: topics

• Labour demand and supply;

• Unemployment forecasting;

• Employment and earnings;

• Emergence of new occupations; 

• New skills required on labour market;

• Skills needed by occupation; 

• Post-graduate tracking;

• Career expectations.



Labor Market Analysis in the Big Data Era: examples and projects
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Exploring new sources of LMI: sentiment analysis



Sentiment analysis: definition

Sentiment analysis 

• is a part of “Text Analytics”;

• identifies attitude (positive, negative, neutral) and emotion (joy, sadness, 

anger, pleasure, disgust, hate, surprise) from a message/comments (text, 

voice or video); 

• using AI (Artificial Intelligence) algorithms for attitude and emotion 

classification. The most used is NLP (Natural Language Processing) algorithms 

such as: Support Vector Machines, Bayesian Networks, Deep Learning.



Sentiment analysis: common tools

Tools for SA:

• MS  Azure Machine Learning – Text Analytics (https://azure.microsoft.com/en-

us/services/cognitive-services/text-analytics);

• Google Natural Language API (https://cloud.google.com/natural-language)

• IBM Watson Natural Language Understanding Text Analysis; 

(https://www.ibm.com/demos/live/natural-language-understanding/self-

service/home);

• Python with NLTK / TextBlob / Keras.



Sentiment analysis using MS Azure uses Azure Cognitive Service for 

Language: a collection of machine learning and AI algorithms in the cloud 

for developing intelligent applications that involve written language.

Sentiment analysis: MS Azure



Sentiment Analysis using MS Azure Cognitive Service applies sentiment 

labels to text, which are returned at a sentence and document level, with a 

score for each. The labels are “positive”, “negative”, and “neutral” and the 

scores range from 1 to 0. 

Sentiment analysis: MS Azure
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Job seekers sentiment analysis: results
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Job seekers sentiment analysis: correlation

R² = 0.8233

Unemployment rate

R² = 0.0164

Electoral participation

R² = 0.0076

Migration rate

R² = 0.0052

Birth rate



Sentiment analysis: conclusions

For HR Analytics:

• Detect and understand employees feelings (e.g., concerning new workplace 

policies, changes in rewards and benefits, the workplace culture, etc. -

improve hiring and recruiting practices, training and development needs);

• Contributes to data driven decision making process (e.g., identify triggers for 

positive and negative sentiment and identify where improvements could be 

made - help to build and maintain an engaged workforce and increase 

productivity).



Sentiment analysis: conclusions

For Policy Analytics:

• Contributes to data driven decision making process (develop various 

indicators that serve as “early warnings” on relevant topics - e.g., migration 

trends, unemployment etc.);

• Monitoring public policies and public investments (e.g., develop the public 

transport infrastructure for commuters).



Sentiment analysis: limitations

• Less procedures/methods to check data accuracy/data quality (genuine 

reviews? - what if these reviews are ALL scripted?, posted by trolls?);

• Sentiment analysis systems trained on English data exclusively;

• Automatic sentiment analysis of reviews using machine models are less 

accurate trained on review data related to labour market.
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